

Instant Autodesk
Revit 2013
Customization with
.NET How-to

A supercharged guide to creating your own plugins,
add-ons, and customizations for Revit with .NET

Don Rudder

BIRMINGHAM - MUMBAI

Instant Autodesk Revit 2013 Customization
with .NET How-to

Copyright © 2013 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the publisher,
except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its dealers
and distributors will be held liable for any damages caused or alleged to be caused directly or
indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies
and products mentioned in this book by the appropriate use of capitals. However, Packt
Publishing cannot guarantee the accuracy of this information.

First published: January 2013

Production Reference: 1220113

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-84968-842-0

www.packtpub.com

Credits

Author
Don Rudder

Reviewer
Harlan R. Brumm

Acquisition Editor
Andrew Duckworth

Commissioning Editor
Priyanka Shah

Technical Editor
Varun Pius Rodrigues

Project Coordinator
Abhishek Kori

Proofreader
Ting Baker

Production Coordinator
Aparna Bhagat

Cover Work
Aparna Bhagat

Prachali Bhiwandkar

Cover Image
Valentina D'silva

About the Author

Don Rudder is the Director of Software Development at CASE and focuses on the creation
and management of specialized software and add-ins for various applications developed for
client support. With over 16 years of experience in the AEC industry, Don has served well over
10 of those years as an HVAC and electrical designer for various MEP firms. He later began
to focus more heavily on software development and related support where he eventually
ended up in San Francisco serving as BIM Manager for HOK. He is self-taught in some 14
programming languages and well versed in .NET, web-based AEC tools, and pretty much any
kind of automation. Don has also presented at Autodesk University and the Revit Technology
Conference of North America.

Don has been the contributing author of the API chapters for Mastering Autodesk Revit
Architecture 2011, Mastering Autodesk Revit Architecture 2012, and Mastering Autodesk
Revit Architecture 2013.

I would like to thank my rock star friends and coworkers at CASE for just
being awesome and bringing me into their mix. Without them, I would
probably still be buried too deep in insignificant obligations without any real
time to share stuff like what's in this book.

About the Reviewer

Harlan R. Brumm has a wide variety of experience within the architecture, engineering,
and the software industries. He's been involved in training development, technical writing,
program management, product management, and customer support. He has presented and
taught internally to coworkers, at industry conferences, and at Autodesk University. Harlan
worked for civil engineers and architects in the midwestern United States as an intern, CAD
manager, and a project manager. His passion is the intersection of architectural design and
technology.

He is an avid blogger and active in social media discussing all things BIM. Follow him on
Twitter: @HarlanBrumm.

To my wife, Catie, and daughter, Maloa, for letting me take on many projects
and supporting me to finish them.

www.PacktPub.com

Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads related to
your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a
print book customer, you are entitled to a discount on the eBook copy. Get in touch with
us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt books
and eBooks.

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can access, read and search across Packt's entire library of books.

Why Subscribe?
ff Fully searchable across every book published by Packt

ff Copy and paste, print and bookmark content

ff On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access PacktLib
today and view nine entirely free books. Simply use your login credentials for immediate access.

Instant Updates on New Packt Books
Get notified! Find out when new books are published by following @PacktEnterprise on
Twitter, or the Packt Enterprise Facebook page.

Table of Contents
Preface	 1
Instant Autodesk Revit 2013 Customization with .NET How-to	 5

Getting started with the Autodesk Revit 2013 API (Must know)	 6
Creating a simple command (Must know)	 16
Adding a custom push button (Must know)	 17
Element filtering (Must know)	 24
Accessing the ProjectInfo data (Must know)	 29
Extracting data (Should know)	 31
Changing values (Must know)	 40
Adding and removing parameters (Become an expert)	 43
Creating plan views (Must know)	 46
Creating a schedule (Become an expert)	 50
Creating sheets and placeholders (Must know)	 53
Placing views on sheets (Become an expert)	 58
Wall color by length (Become an expert)	 62
Subscribing and unsubscribing to events (Should know)	 69

Preface
Welcome to Instant Autodesk Revit 2013 Customization with .NET How-to. This book will walk
you through several of the Autodesk Revit 2013 API features in an easy to follow step-by-step
process using powerful code samples. Each of the included code recipes have been designed
to help get you right into some of the most common features of the Revit 2013 API.

What this book covers
Getting started with the Autodesk Revit 2013 API (Must know), introduces the fundamentals
necessary to understand how add-ins get loaded into Revit and the basics for each of the
three supported add-in project types.

Creating a simple command (Must know), describes a "Hello World" style introduction to
Revit add-ins.

Adding a custom push button (Must know), describes how to make your own ribbon tab and
add a basic push button used to launch a custom command. A brief textbox control sample
is also discussed showing how to react to the TextBoxEnterPressed event.

Element filtering (Must know), introduces two different ways to filter elements in a Revit model.

Accessing the ProjectInfo data (Must know), describes how to access an element of a
specific category and how to read data from properties bound to the element.

Extracting data (Should know), shows how to iterate over a set of elements within a common
category and export values for specific parameters to an external CSV file.

Changing values (Must know), describes how to access element parameters and update
their values.

Adding and removing parameters (Become an expert), describes how to load new shared
parameters into the model and bind them to a category by name.

Preface

2

Creating plan views (Must know), introduces the process of adding new plan views to the
model using the new and improved API classes for view generation.

Creating a schedule (Become an expert), describes a new API feature in Revit 2013 that
enables the creation of design schedules.

Creating sheets and placeholders (Must know), demonstrates how to create sheets as well
as non-graphical placeholder sheets.

Placing views on sheets (Become an expert), introduces the process of placing an existing
view on an existing sheet.

Wall color by length (Become an expert), demonstrates how to use the analysis framework
to display data graphically on native wall elements by their length.

Subscribing and unsubscribing to events (Should know), explains how to subscribe and
unsubscribe from events based on criteria that you provide in this sample.

Dynamically enable a control (Become an expert), describes how to enable or disable
a custom ribbon control based on the existence of an element of a required category in
the current selection set. This recipe is not present in the book but is available as a free
download from the following link: http://www.packtpub.com/sites/default/files/
downloads/8420OT_Bonus_Chapter.pdf

Creating, loading, and placing a family (Must know), introduces how to create a new family
document from an existing family template, generate a basic box extrusion, and load
the family into an existing model document. This recipe is not present in the book but is
available as a free download from the following link: http://www.packtpub.com/sites/
default/files/downloads/8420OT_Bonus_Chapter.pdf

What you need for this book
You need to have Autodesk Revit 2013 and Microsoft Visual Studio 2010 Professional
installed. You can download a 30-day trial of Autodesk Revit 2013 from the Autodesk website
at usa.autodesk.com/revit/trial/. It should be noted that none of the sample code
provided is supported on Autodesk Revit LT. A 30-day trial of Microsoft Visual Studio Professional
can be downloaded from www.microsoft.com/visualstudio.

Who this book is for
This book targets design professionals with an intermediate to advanced working knowledge of
Autodesk Revit 2013 with some existing .NET programming knowledge. If you are a beginner
programmer but are an advanced Revit user, this book may still be suitable for you.

Conventions
In this book, you will find a number of styles of text that distinguish between different kinds of
information. Here are some examples of these styles, and an explanation of their meaning.

Preface

3

Code words in the text are shown as follows: "GetMaterialLINQ queries the list using a
single query command and as a result is quite a bit quicker at gathering materials by name."

A block of code is set as follows:

Dim m_app As UIApplication
m_app = commandData.Application
Dim m_doc As Document
m_doc = m_app.ActiveUIDocument.Document

When we wish to draw your attention to a particular part of a code block, the relevant lines
or items are set in bold:

Dim m_app As UIApplication
m_app = commandData.Application
Dim m_doc As Document
m_doc = m_app.ActiveUIDocument.Document

Any command-line input or output is written as follows:

copy "$(ProjectDir)Revit2013Samples_VB.addin" "$(AppData)\Autodesk\REVIT\
Addins\2013\

New terms and important words are shown in bold. Words that you see on the screen, in
menus or dialog boxes for example, appear in the text like this: "clicking the Next button
moves you to the next screen".

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or may have disliked. Reader feedback is important for us to develop
titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com, and
mention the book title via the subject of your message.

If there is a book that you need and would like to see us publish, please send us a note in
the SUGGEST A TITLE form on www.packtpub.com or e-mail suggest@packtpub.com.

Preface

4

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you to
get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased from your
account at http://www.PacktPub.com. If you purchased this book elsewhere, you can
visit http://www.PacktPub.com/support and register to have the files e-mailed directly
to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do happen.
If you find a mistake in one of our books—maybe a mistake in the text or the code—we would be
grateful if you would report this to us. By doing so, you can save other readers from frustration
and help us improve subsequent versions of this book. If you find any errata, please report them
by visiting http://www.packtpub.com/support, selecting your book, clicking on the errata
submission form link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded on our website, or added to any
list of existing errata, under the Errata section of that title. Any existing errata can be viewed by
selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. At Packt,
we take the protection of our copyright and licenses very seriously. If you come across any
illegal copies of our works, in any form, on the Internet, please provide us with the location
address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated material.

We appreciate your help in protecting our authors, and our ability to bring you valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with any
aspect of the book, and we will do our best to address it.

Instant Autodesk Revit
2013 Customization

with .NET How-to
Welcome to Instant Autodesk Revit 2013 Customization with .NET How-to. We all know how
rewarding it can be to develop useful software tools. Becoming efficient at automating and
extending the functionality of Revit can result in tremendous cost savings for your firm. The
more people in your organization that use the tools you develop will add to these savings
resulting in an even more impressive ROI. By the time you finish this book and complete each
of the samples you will be fully capable and hopefully inspired to continue developing your
own API projects for Autodesk Revit 2013 and beyond.

I've made a few assumptions throughout the book pertaining to your programming and
general Revit capabilities. If you should ever find yourself in need of an explanation or
definition for any of the Revit terms or concepts used in these writings, consult the online
Autodesk Revit 2013 help files. An assumption has also been made that you have at least
a basic understanding of programming with the Microsoft .NET Framework. If you're brand
new to programming in .NET you should do just fine so long as you follow the instructions
and samples closely.

Each of the provided code samples require that you have a Microsoft .NET 4.0 compatible
interactive development environment (IDE) installed. Microsoft Visual Studio 2010
Professional was used to develop each of the samples used in this book. You can download
a 30-day trial of Microsoft Visual Studio Professional from the Microsoft website at
http://www.microsoft.com/visualstudio/en-us/try.

Most of the sample code is written in Visual Basic .NET with some being in C#. You can
convert the samples between these two languages if you like using the freely accessible
website at http://www.developerfusion.com/tools/convert/vb-to-csharp/.
Converting the samples from one language to another will require further tweaking beyond
the automated output of the translator in order to get them to function as intended.

http://www.microsoft.com/visualstudio/en-us/try
http://www.developerfusion.com/tools/convert/vb-to-csharp/

Instant Autodesk Revit 2013 Customization with .NET How-to

6

Getting started with the Autodesk Revit
2013 API (Must know)

In this recipe you will learn about the fundamentals required to begin building your own API
projects. Since the Revit API is so vast and way beyond the scope of this book, we'll just focus
on the key points to get you started. Understanding the topics in this recipe is essential to your
understanding of some of the more complex topics in later recipes.

The Revit 2013 API consists of two Microsoft .NET 4.0 compatible libraries that will need to
be referenced into your API projects. Both of these libraries are found in the Program folder
of your Revit installation. When referencing these libraries into your projects it is important
to always set their Copy Local property to False.

RevitAPI.dll contains all of the database level namespaces required to interact with
model documents.

RevitAPIUI.dll contains namespaces to the user interface features such as ribbon
controls and native Revit styled dialog boxes.

The three API project types
The Revit 2013 API only supports the in-process DLLs which can only run inside the process
of its host client, which in this case is Revit. It is not yet and may never be possible to create
API utilities for Revit that run in their own process or as their own executable.

Three distinctly different Revit 2013 API project interface types are possible, each different
in scope and capability. We will build at least one of each of these project types in this book
to demonstrate their use.

ff IExternalCommand interfaces: These interfaces execute upon user initiated
command clicks. Data held in memory throughout the execution of the command
does not persist and is destroyed upon the completion of the command execution.

ff IExternalApplication interfaces: These interfaces support the addition of custom
user controls to the ribbon as well as document-level events. Data held in memory
by applications will persist throughout the entire session of Revit.

ff IExternalDbApplication interfaces: These interfaces are used to subscribe to
document-level events only and do not support any interactions to the RevitAPIUI.
dll namespaces. Database-level applications do not support the addition of user
interface controls or dialogs. Data held in memory by database-level applications
will persist throughout the entire session of Revit.

Instant Autodesk Revit 2013 Customization with .NET How-to

7

Transactions
Transactions are a common feature of data interchange technologies and serve as a kind of
watchdog preventing failed or unwanted changes to write to a data source. Transactions are
mandatory every time an attempt is being made to change data in a Revit document.
Read-only queries do not require a transaction.

Returning results
We will always be required to return one of the three supported return types in each of the
three Revit 2013 API implementation types.

ff Result.Succeeded: This will allow changes to be made to the model upon successful
execution of the code. This return value will always be the last line of code between
the main implementation's Try and Catch statements.

ff Result.Canceled: This will not allow changes to be committed to the model and is
typically used when the user cancels a command.

ff Result.Failed: This will not allow any changes to the model and will display a
Revit-styled message box containing the text set to the message parameter of an
IExternalCommand implementation. This return value is always placed between
a Try block's Catch and End Try statements.

The manifest file
Manifest files are XML-formatted ASCII files with a .addin file extension used to register
API projects into Revit. The complete documentation for manifest files can be found in the
document entitled Getting Started with the Revit API.doc in the Revit 2013 SDK.

Manifest files are only read into Revit during the launch of a new session. Revit will scan two
directories for the .addin files to load at application start-up. Placing the manifest file in
the C:\ProgramData \Autodesk\Revit\Addins\2013\ directory in Windows 7 will
make the add-in available for all users on the local machine and will require administrative
privileges to modify. Placing the manifest file in the %USERPROFILE%\Application Data\
Autodesk\Revit\Addins\2013\ directory in Windows 7 will make the add-in available for
the current user only and will not require administrative privileges to modify.

A sample manifest file named Revit2013Samples_VB.addin is shown next containing the
minimum required parameters for each of the three API project types. Notice how each Addin
tag is embedded within a single RevitAddins tag. This is essential when using a single
manifest file to load multiple commands, applications, or database-level applications. The first
AddIn is a command, then an application, and lastly a database-level application:

<?xml version="1.0" encoding="utf-8"?>
<RevitAddIns>
 <AddIn Type="Command">
 <Text>Command Revit 2013 Samples VB</Text>
 <Assembly>Revit2013Samples_VB.dll</Assembly>

Instant Autodesk Revit 2013 Customization with .NET How-to

8

 <FullClassName>
 Revit2013Samples_VB.CommandBoilerPlate
 </FullClassName>
 <ClientId>17a6cb83-8563-4dc7-a026-97fe519211a0
 </ClientId>
 <VendorId>XXXX</VendorId>
 <VendorDescription>
 Packt Publishing Samples for
 'Autodesk Revit 2013 Customization with .NET'
 </VendorDescription>
 </AddIn>
 <AddIn Type="Application">
 <Name>Application Revit2013Samples_VB</Name>
 <Assembly>Revit2013Samples_VB.dll</Assembly>
 <ClientId>0c78ba8a-8b96-4d31-b81b-0b77766ff38c
 </ClientId>
 <FullClassName>
 Revit2013Samples_VB.ApplicationBoilerPlate
 </FullClassName>
 <VendorId>XXXX</VendorId>
 <VendorDescription>
 Packt Publishing Samples for
 'Autodesk Revit 2013 Customization with .NET'
 </VendorDescription>
 </AddIn>
 <AddIn Type="DBApplication">
 <Name>Application Revit2013Samples_VB</Name>
 <Assembly>Revit2013Samples_VB.dll</Assembly>
 <ClientId>0c75ba8a-8b9c-4d31-b81b-0b77766f138c
 </ClientId>
 <FullClassName>
 Revit2013Samples_VB.DBApplicationBoilerPlate
 </FullClassName>
 <VendorId>XXXX</VendorId>
 <VendorDescription>
 Packt Publishing Samples for
 'Autodesk Revit 2013 Customization with .NET'
 </VendorDescription>
 </AddIn>
</RevitAddIns>

Instant Autodesk Revit 2013 Customization with .NET How-to

9

Downloading the example code

You can download the example code files for all Packt books
you have purchased from your account at http://www.
PacktPub.com. If you purchased this book elsewhere, you
can visit http://www.PacktPub.com/support and
register to have the files e-mailed directly to you.

The Autodesk Revit 2013 SDK
The official Revit 2013 Software Development Kit (SDK) is included in the installation media
in each of the Revit product flavors. It can also be downloaded from the Autodesk website at
http://images.autodesk.com/adsk/files/revit2013sdk0.exe. The SDK contains
several code samples in both VB and C#.

Getting ready
It is common to build a single API project containing several commands and applications, but
Revit API commands and applications each require their entry point be isolated into their own
classes. In this recipe, we will create boilerplate versions of each of the three supported API
project types for Revit 2013.

How to do it...
1.	 Open Visual Studio 2010 and create a new Class Library project named

Revit2013Samples_VB and save it to your local hard drive.

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com/support
http://images.autodesk.com/adsk/files/revit2013sdk0.exe

Instant Autodesk Revit 2013 Customization with .NET How-to

10

2.	 Open the Property Pages window by right-clicking on the project name in Solution
Explorer and selecting Properties.

3.	 Click on the References tab in the properties view and click on the Add… button.

4.	 Select the Browse tab and add the two Revit namespace libraries RevitAPI.dll
and RevitUIAPI.dll from the Program directory of your Revit 2013 installation.

Instant Autodesk Revit 2013 Customization with .NET How-to

11

5.	 Select the two Revit namespace libraries that you just imported in the References
tab of the properties view and set their property for Copy Local to False.

6.	 Click on the Debug tab of the properties view and under Start Action set the
Start external program: option active and enter the path to your Revit.exe.
This file is typically located at C:\Program Files\Autodesk\Revit
Architecture 2013\Program\Revit.exe depending on the flavor of
Revit that you have installed.

7.	 Select the Class1.vb file in the solution explorer and change the property for File
Name in the properties palette to CommandBoilerPlate.vb.

8.	 Enter the following boilerplate code into the CommandBoilerPlate.vb file:
Imports Autodesk.Revit.DB
Imports Autodesk.Revit.UI
Imports Autodesk.Revit.Attributes

''' <summary>
''' Sample Command
''' </summary>
<Transaction(TransactionMode.Manual)>
Public Class CommandBoilerPlate

 ' Required Implementation
 Implements IExternalCommand

 ''' <summary>
 ''' Revit UI Entry Point for a Command
 ''' </summary>
 Public Function Execute(commandData As _
 ExternalCommandData,
 ByRef message As String,
 elements As ElementSet) _
 As Result Implements _
 IExternalCommand.Execute

 Try
 ' Begin Code Here
 ' Return Success
 Return Result.Succeeded
 Catch ex As Exception
 ' In Case of a Failure
 message = ex.Message
 Return Result.Failed
 End Try
 End Function
End Class

Instant Autodesk Revit 2013 Customization with .NET How-to

12

9.	 Add a new class named ApplicationBoilerPlate.vb and enter the following
boilerplate code:
Imports Autodesk.Revit.DB
Imports Autodesk.Revit.UI
Imports Autodesk.Revit.DB.Events
Imports Autodesk.Revit.ApplicationServices
Imports Autodesk.Revit.Attributes

''' <summary>
''' Sample Application
''' </summary>
<Transaction(TransactionMode.Manual)>
Public Class ApplicationBoilerPlate

 ' Required Implementation
 Implements IExternalApplication

 ''' <summary>
 ''' Runs when Revit Shuts Down
 ''' </summary>
 Public Function OnShutdown(application As _
 UIControlledApplication) _
 As Result Implements _
 IExternalApplication.OnShutdown

 Try
 ' Begin Code Here
 ' Return Success
 Return Result.Succeeded
 Catch
 ' In Case of Failure
 Return Result.Failed
 End Try
 End Function

 ''' <summary>
 ''' Runs when Revit Starts Up
 ''' </summary>
 Public Function OnStartup(application As _
 UIControlledApplication) _
 As Result Implements _
 IExternalApplication.OnStartup

 Try

Instant Autodesk Revit 2013 Customization with .NET How-to

13

 ' Begin Code Here

 ' Return Success
 Return Result.Succeeded

 Catch

 ' In Case of Failure
 Return Result.Failed

 End Try
 End Function
End Class

10.	 Add a new class named DBApplicationBoilerPlate.vb and enter the following
boilerplate code:
Imports Autodesk.Revit.DB
Imports Autodesk.Revit.UI
Imports Autodesk.Revit.DB.Events
Imports Autodesk.Revit.ApplicationServices
Imports Autodesk.Revit.Attributes

''' <summary>
''' Sample Database Level Application
''' </summary>
<Transaction(TransactionMode.Manual)>
Public Class DBApplicationBoilerPlate

 ' Required Implementation
 Implements IExternalDBApplication

 ''' <summary>
 ''' Runs when Revit Shuts Down
 ''' </summary>
 Public Function OnShutdown(application As _
 ControlledApplication) _
 As ExternalDBApplicationResult _
 Implements IExternalDBApplication.OnShutdown

 Try
 ' Begin Code Here
 ' Return Success
 Return Result.Succeeded
 Catch
 ' In Case of Failure
 Return Result.Failed

Instant Autodesk Revit 2013 Customization with .NET How-to

14

 End Try
 End Function

 ''' <summary>
 ''' Runs when Revit Starts Up
 ''' </summary>
 Public Function OnStartup(application As _
 ControlledApplication) _
 As ExternalDBApplicationResult _
 Implements IExternalDBApplication.OnStartup

 Try
 ' Begin Code Here
 ' Return Success
 Return Result.Succeeded
 Catch
 ' In Case of Failure
 Return Result.Failed
 End Try
 End Function
End Class

How it works...
Did you notice the similarities between each of the three sample classes before?

The two namespace imports for Autodesk.Revit.DB and Autodesk.Revit.UI should
always be listed at the very top of any code file that makes a reference to these namespaces.
This prevents you from having to include the full namespaces for classes each time you call
them in your projects.

TransactionMode is a required attribute for each Revit 2013 API project type and should
always be placed directly above the class declaration. The Manual mode has been set for this
attribute on each class since this will be the only supported option in future releases of the
Revit API.

Each class begins with an implementation. These implementations contain the functions
necessary to initiate and conclude connectivity to the Revit API for the command or
application type.

The Try blocks should always be used to encapsulate the main functionality of your project.
Return Result.Succeeded should always be the last line prior to Catch while Return
Result.Failed should always be between the Catch and End Try statements. Following
this strategy will help prevent model corruption when code should fail for any reason.

Instant Autodesk Revit 2013 Customization with .NET How-to

15

There's more...
Did you know that you can automatically set your manifest file(s) to copy to their installation
directory on each successful build and debug event? Open up the properties of your solution
and in the Compile tab click on the Build Events… button in the lower right corner.

Enter the following command into the Post-build event command line: area:

copy "$(ProjectDir)Revit2013Samples_VB.addin" "$(AppData)\Autodesk\REVIT\
Addins\2013\Revit2013Samples_VB.addin"

Now each time you debug your solution, the manifest file will get copied into the Addins
directory so your project DLL will load into the Revit session.

Instant Autodesk Revit 2013 Customization with .NET How-to

16

You may have used third party tools for Revit that utilize their own custom ribbon tabs with
custom buttons and controls for accessing the tools within the utility. There are a number of
options you have for customizing ribbon tabs and adding your own user controls for accessing
commands within your applications. This section will focus on some of the more common
controls available to you for interacting with commands.

In this section we will build a custom IExternalApplication that adds a pair of custom
user controls to a custom ribbon tab where we can access a sample hello world style
IExternalCommand class that we will build in this section as well.

Understanding a few important ground rules will help you understand custom Revit ribbon
user controls. Ribbon controls can only be added from the IExternalApplication classes
and the only controls possible to use are made available from within the RevitAPIUI.dll
library. A full list of supported ribbon controls can be found in the RevitAPI.chm document
of the SDK under Autodesk.Revit.UI.

You will hear the terms tab and panel used throughout the samples in this chapter. Tabs
contain panels. The following screenshot shows a custom tab named PACKT Samples
containing a panel named Chapter 2 Ribbon Samples. I cheated a little and held down the
Ctrl key and dragged the tab to the far left for the sake of image clarity. Custom tabs will
typically be at the far right-hand side of the tab listing.

Creating a simple command (Must know)
We will create a very boring and perfectly useless sample command that will display a basic
Hello PACKT message box to indicate success when the user initiates the command from
the custom ribbon controls.

Getting ready
Now that our sample code files are beginning to stack up in our solution, it is a good time
to organize them into directories within our solution making them easier to find. Create a
directory in your solution named Ch1 Intro to Revit API and place all of the boilerplate
code classes that we created in the previous recipe into this directory. Create another
directory named Ch2 Ribbon and place each of the code class samples you create in
this recipe into this directory.

Instant Autodesk Revit 2013 Customization with .NET How-to

17

How to do it…
1.	 Create a new class in the Ch2 Ribbon directory named CommandHelloPACKT.vb.

2.	 Copy and paste the boilerplate code from the IExternalCommand example that we
created in Ch1 Intro to Revit API into this file but be sure that our new class
name remains CommandHelloPACKT.

3.	 The only difference between the boilerplate code and our new class other than the
class name will be the addition of one single line of code just beneath the ' Begin
Code Here line within the Execute function:
 ' Begin Code Here
 MsgBox("Hello PACKT")

How it works…
When the user initiates the command, a standard .NET message box class is displayed
making it easy to notice when the command has been executed. The following screenshot
shows just how this message box will look:

Adding a custom push button (Must know)
Now that we have a fundamental grasp of ribbon controls, let's create a push button
to access the command we just created. In this recipe, we will build a reusable function
that we will use to add a push button control to a custom tab in the Revit ribbon.

Getting ready
Remember the manifest file and how to add new applications to it? We need to edit our
Revit2013Samples_VB.addin manifest file so that our new application class will load into
the Revit session. Add the following block of code inside the RevitAddIns attribute being
careful not to nest it inside any other Command, Application, or DBApplication tags:

 <AddIn Type="Application">
 <Name>Application Ribbon</Name>
 <Assembly>Revit2013Samples_VB.dll</Assembly>

Instant Autodesk Revit 2013 Customization with .NET How-to

18

 <ClientId>
 0c78ba8b-8b96-4d31-b81b-0b77766ff38d
 </ClientId>
 <FullClassName>
 Revit2013Samples_VB.ApplicationRibbon
 </FullClassName>
 <VendorId>XXXX</VendorId>
 <VendorDescription>
 Packt Publishing Samples for 'Autodesk Revit 2013 Customization
with .NET'
 </VendorDescription>
 </AddIn>

Now with the manifest file edited to load our new application into Revit when we debug the
project, we can create the application class and assemble the code that will load our custom
controls into the ribbon.

How to do it...
1.	 Adding custom ribbon controls requires a few additional namespace references

to your project in order to accommodate button images. Open up your project's
properties page and open the References tab.

2.	 Click on the Add… button and set the .NET tab active.

3.	 Add PresentationCore, System.Xaml, and WindowsBase then click on OK.

4.	 Add a new class in the Ch2 Ribbon folder named ApplicationRibbon.vb.

5.	 Copy and paste the boilerplate code for IExternalApplication and be sure that
our new class name remains ApplicationRibbon.

6.	 A couple of new namespaces are required by this new ribbon sample that we did
not have in our boilerplate code samples. Add the following two namespaces just
beneath the ones that are already there:
Imports System.Reflection
Imports System.Windows.Media.Imaging

7.	 A reusable function for adding push buttons comes in handy in case we ever decide
later that we want to add more than one button. Add the function shown next inside
our new class beneath the OnStartup function:
 ''' <summary>
 ''' Add a PushButton to the Ribbon
 ''' </summary>
 Private Function AddPushButton(Panel As RibbonPanel,
 ButtonName As String,
 ButtonText As String,
 ImagePath16 As String,

Instant Autodesk Revit 2013 Customization with .NET How-to

19

 ImagePath32 As String,
 dllPath As String,
 dllClass As String,
 Tooltip As String) _
 As Boolean

 Try

 ' PushButtonData Object
 Dim m_pbData As New PushButtonData _
 (ButtonName, ButtonText, dllPath, dllClass)

 ' Small Image
 If ImagePath16 <> "" Then
 Try
 m_pbData.Image = _
 New BitmapImage(New Uri(ImagePath16))
 Catch
 ' Couldn't Find the Image
 End Try
 End If

 ' Large Image
 If ImagePath32 <> "" Then
 Try
 m_pbData.LargeImage = _
 New BitmapImage(New Uri(ImagePath32))
 Catch
 ' Couldn't Find the Image
 End Try
 End If

 ' Set the Tooltip
 m_pbData.ToolTip = Tooltip

 ' Add it to the Panel
 Dim m_pb As PushButton = Panel.AddItem(m_pbData)

 ' Success
 Return True

 Catch ex As Exception

 ' Failure
 Return False

 End Try

 End Function

Instant Autodesk Revit 2013 Customization with .NET How-to

20

8.	 The next thing to do is update the OnStartup code with the necessary information
to call the function. The completed OnStartup code is shown as follows:

 ''' <summary>
 ''' Runs when Revit Starts Up
 ''' </summary>
 Public Function OnStartup(app As UIControlledApplication) _
 As Result Implements IExternalApplication.OnStartup

 Try

 ' Our Target Tab Name
 Dim m_tabName As String
 m_tabName = "PACKT Samples"

 ' First Create the Tab
 Try
 app.CreateRibbonTab(m_tabName)
 Catch ex As Exception
 ' Might already exist...
 ' Common when multiple applications target
 ' the same ribbon tab
 End Try

 ' Ribbon Panel Name
 Dim m_rpName As String
 m_rpName = "Chapter 2 Ribbon Samples"

 ' The Ribbon Panel
 Dim m_RibbonPanel As RibbonPanel = Nothing

 ' Get the Panel Within the Tab by Name
 Dim m_RP As New List(Of RibbonPanel)
 m_RP = app.GetRibbonPanels(m_tabName)
 For Each x As RibbonPanel In m_RP
 If x.Name.ToUpper = m_rpName.ToUpper Then
 m_RibbonPanel = x
 Exit For
 End If
 Next

 ' Add the Panel if it doesn't Exist
 If m_RibbonPanel Is Nothing Then
 m_RibbonPanel = app.CreateRibbonPanel(m_tabName,
 m_rpName)
 End If

Instant Autodesk Revit 2013 Customization with .NET How-to

21

 ' PushButtonData for Hellow World Sample
 If AddPushButton(m_RibbonPanel,
 "Ch2HelloPACKT",
 "Hello PACKT",
 "",
 "",
 "Revit2013Samples_VB.dll",
 "Revit2013Samples_VB.CommandHelloPACKT",
 "Show a simple message box 'Hello PACKT!'") _
 = False Then

 ' Tell the User it Failed
 MsgBox("Failed to Add PushButton Control!",
 MsgBoxStyle.Critical,
 "Error")

 End If

 ' Return Success
 Return Result.Succeeded

 Catch

 ' In Case of Failure
 Return Result.Failed

 End Try

 End Function

How it works...
The OnStartup code is fairly straightforward here in that it only adds a single control. First a
tab named PACKT Samples is created with a panel named Chapter 2 Ribbon Samples.
If the code is successful in returning a RibbonPanel object, then a call is made to add the
PushButton control.

Only after a RibbonPanel object has successfully been created or retrieved by the code,
is a PushButton object is added to the panel using the AddPushButton function. The
AddPushbutton function returns False on failure giving us an opportunity to display
an error message to the user if we want. Take a look at the arguments that this function
consumes and notice that we did not pass a value for ImagePath16 or ImagePath32. If we
were to provide a full path to the image files accessible by our application to either of these
two arguments, they would display as icons in the ribbon above the command text.

ff Panel: It is the RibbonPanel object that we want to add the control into.

ff ButtonName: It is the unique name for the button.

Instant Autodesk Revit 2013 Customization with .NET How-to

22

ff ButtonText: It will be used as the text displayed in the user interface. If an image is
specified, the button text will display beneath the button image.

ff ImagePath16: It is used to load an image file for the small icon such as when it
would be added to the QAT. The image used by this argument should be formatted
as 16 x 16 pixels.

ff ImagePath32: It is used to load an image file for the small icon, such as when it
would be added to the QAT. The image used by this argument should be formatted
as 32 x 32 pixels.

ff dllPath: It should contain the full path to the DLL file that contains the command
that we want the button to execute.

ff dllClass: It is the full class name where the IExternalCommand interface
is implemented.

ff Tooltip: It will display when the command button is hovered over. It is suggested to
always use tooltips to help keep your users out of the dark if the button text is not
sufficient to inform first time users as to the button's purpose.

There's more...
The textbox control is another interesting control supported by the Revit API. A textbox control
might come in handy if you wanted to make some sort of pseudo command line or to record
comments to a log as you work in a model.

Adding a TextBox control
1.	 Add the Autodesk.Revit.UI.Events namespace to the top of the

ApplicationRibbon class:
Imports Autodesk.Revit.UI.Events

2.	 Add the event handler subroutine inside the main class declaration area that we want
to run when the Enter key is pressed inside the textbox control:
 ''' <summary>
 ''' TextBox Enter Event Handler
 ''' </summary>
 Public Sub MyTextBoxEnter(ByVal sender As Object, _
 ByVal args As TextBoxEnterPressedEventArgs)

 ' Message showing contents
 MsgBox(sender.value,
 MsgBoxStyle.Information,
 "PACKT Text Box")

 End Sub

Instant Autodesk Revit 2013 Customization with .NET How-to

23

3.	 Enter the function for adding a textbox control to the ribbon. This function
also includes the required event subscription for handling the Enter key in
the textbox control:
 ''' <summary>
 ''' Add a textbox control to the ribbon
 ''' </summary>
 Private Function AddTextBox(Panel As RibbonPanel,
 tbName As String,
 tbTooltip As String) As Boolean

 Try

 ' The TextBoxData Object
 Dim m_tbD As New TextBoxData(tbName)

 ' Add the Control
 Dim m_tb As TextBox
 m_tb = Panel.AddItem(m_tbD)

 ' Sample Text
 m_tb.PromptText = "I'm a Text Box!"

 ' Button
 m_tb.ShowImageAsButton = True

 ' Tooltip
 m_tb.ToolTip = tbTooltip

 ' Add the Handler for Enter Key
 AddHandler m_tb.EnterPressed, _
 New EventHandler(Of TextBoxEnterPressedEventArgs) _
 (AddressOf Me.MyTextBoxEnter)

 ' Success
 Return True

 Catch

 ' Failure
 Return False

 End Try

 End Function

Instant Autodesk Revit 2013 Customization with .NET How-to

24

4.	 Add the call to AddTextBox inside the OnStartup function immediately above the
line that reads ' Return Success:
 ' Add a textbox
 If AddTextBox(m_RibbonPanel,
 "tbPACKT",
 "Enter text and press the Enter key!") _
 = False Then

 ' Tell the User it Failed
 MsgBox("Failed to Add TextBox Control!",
 MsgBoxStyle.Critical,
 "Error")

 End If

5.	 Run the add-in in the debugger and you'll see the new textbox control in the ribbon.
Enter a text string into the textbox and hit Enter and you will get a message box pop
up displaying the same text string that you entered into the textbox control.

Element filtering (Must know)
The Revit API offers quite a few options for finding elements in the active document. Some
methods for collecting elements are quicker than others and it is important to understand
how to gauge this performance between the various methods that you may want to be
experimenting with. Filtering for elements by class type or category is an example of a very
simple and straightforward filtering type and due to its simplicity can be performed quite
efficiently. It is when you have a set of more strict filtering requirements that will typically
result in slower element filtering performance, such as across multiple categories matching
a specific component naming pattern.

The two filtering methods we will learn in this recipe are OfCategory using element iteration
and LINQ. The Language Integrated Query (LINQ) method uses query syntax similar
to Structured Query Language (SQL) used in database queries and can perform quite
efficiently for some types of search requirements but poorly in others.

We will learn how to utilize the native .NET StopWatch class to time the performance of each
filtering method so we can determine and use the method that performs most efficiently. If
you are ever unsure as to which method will perform the most efficiently, test each scenario
using StopWatch and know for sure which method is fastest.

Instant Autodesk Revit 2013 Customization with .NET How-to

25

Getting ready
We will follow the same directory organization strategy that we used in the previous
recipe by placing all of the samples we create in this recipe into a directory named
Ch3 Elements in our solution project. This sample will show two distinctly different
ways of filtering objects using the same criteria. The first sample command will use the
FilteredElementCollector method and the second using LINQ. We will utilize the .NET
StopWatch class to time each of our filters and report the results to the user.

Since this sample implements IExternalCommand it requires its own entry into the .addin
manifest file in order to run. Add the following entry to our Revit2013Samples_VB.addin
file inside the RevitAddIns tag being careful not to nest it inside any other Command,
Application, or DBApplication:

 <AddIn Type="Command">
 <Text>
 Sample - Ch3 Element Filtering
 </Text>
 <Assembly>
 Revit2013Samples_VB.dll
 </Assembly>
 <FullClassName>
 Revit2013Samples_VB.CommandElementFiltering
 </FullClassName>
 <ClientId>14a6cba3-a563-4dc7-a026-47fe5c9a11a0</ClientId>
 <VendorId>XXXX</VendorId>
 <VendorDescription>
 Packt Publishing Samples for
 'Autodesk Revit 2013 Customization with .NET'
 </VendorDescription>
 </AddIn>

How to do it...
1.	 Add a new class named CommandElementFiltering and copy the boilerplate

code from CommandBoilerPlate into this class being careful to keep the new class
name as CommandElementFiltering.

2.	 Add the following namespace to the top of the class just after the three namespaces
already there to enable our StopWatch functionality:
Imports System.Diagnostics

Instant Autodesk Revit 2013 Customization with .NET How-to

26

3.	 The first function that we will add to our new class will collect the list of materials
using the traditional method of filtering by name. Add the GetMaterial code
inside our CommandElementFiltering class after the Execute function:
 ''' <summary>
 ''' Get a specific materials by name
 ''' </summary>
 Private Function GetMaterial(p_name As String,
 p_doc As Document) _
 As List(Of Material)

 ' The List
 Dim m_materials As New List(Of Material)

 ' The Collector
 Dim m_col As New FilteredElementCollector(p_doc)
 m_col.OfCategory(BuiltInCategory.OST_Materials)

 ' Find Matching Names
 For Each x In m_col.ToElements

 ' Does the Name Match
 If x.Name.ToLower.Contains(p_name) Then

 ' Add the Matching Item
 m_materials.Add(x)

 End If

 Next

 ' Return the List
 Return m_materials

 End Function

4.	 The second function performs the same action but uses LINQ to find matching
materials by name. Add the GetMaterialLINQ code after the GetMaterial
function that you just added:
 ''' <summary>
 ''' Get a specific materials by name using LINQ
 ''' </summary>
 Private Function GetMaterialLINQ(p_name As String,
 p_doc As Document) _
 As List(Of Material)

 ' Fresh List
 Dim m_materials As New List(Of Material)

 ' The Collector

Instant Autodesk Revit 2013 Customization with .NET How-to

27

 Dim m_col As New FilteredElementCollector(p_doc)
 m_col.OfCategory(BuiltInCategory.OST_Materials)

 ' The non LINQ List
 Dim m_eList As IEnumerable(Of Element)
 m_eList = m_col.ToElements

 ' LINQ Selection by Name
 Dim MaterialElement = _
 From e In m_eList
 Where e.Name.ToLower.Contains(p_name)

 ' Any Matches?
 If MaterialElement.Count > 0 Then

 For Each x In MaterialElement

 ' Add the Item
 m_materials.Add(x)

 Next

 End If

 ' Return the List
 Return m_materials

 End Function

5.	 Now that we have our element filtering functions added to our class, we will need
some code to call them from within the Execute function. Add the following code
between the ' Begin Code Here and ' Return Success lines inside the
Execute function that we pasted previously from the CommandBoilerPlate class
we built in the previous recipe entitled Getting started with the Autodesk Revit 2013
API (Must know):
 Dim m_doc As Document
 m_doc = _
 commandData.Application.ActiveUIDocument.Document

 ' Test #1 - Traditional
 Dim m_sw_1 As New Stopwatch
 m_sw_1.Start()

 ' Return the Values
 Dim m_materials_1 As New List(Of Material)
 m_materials_1 = GetMaterial("a", m_doc)
 m_sw_1.Stop()

Instant Autodesk Revit 2013 Customization with .NET How-to

28

 ' Test #2 - LINQ
 Dim m_sw_2 As New Stopwatch
 m_sw_2.Start()

 ' Return the Values
 Dim m_materials_2 As New List(Of Material)
 m_materials_2 = GetMaterialLINQ("a", m_doc)
 m_sw_2.Stop()

 ' Display the Results
 Dim m_results As String = _
 "Traditional (non LINQ):" & vbCr
 m_results += m_materials_1.Count.ToString &
 " items returned" & vbCr &
 m_sw_1.ElapsedMilliseconds.ToString() &
 " milliseconds elapsed" & vbCr & vbCr
 m_results += "LINQ Sample:" & vbCr &
 m_materials_2.Count.ToString &
 " items returned" & vbCr &
 m_sw_2.ElapsedMilliseconds.ToString() &
 " milliseconds elapsed"

 ' Construct and Display a Revit TaskDialog
 Dim m_td As New TaskDialog("Elapsed Time:")
 m_td.MainInstruction = "Material Filtering Results"
 m_td.MainContent = m_results
 m_td.Show()

6.	 Run the command and take a look at the results dialog. In this case, the LINQ
method is much faster than the method that uses traditional iteration.

Instant Autodesk Revit 2013 Customization with .NET How-to

29

How it works...
The StopWatch class is very easy to use and provides valuable information helping you to
test and quantify performance comparisons as you develop. I use it frequently to understand
where my applications are running slow so that I know where to focus to improve the overall
performance of my applications. Just remember to comment out any message box code that you
use to report StopWatch results to the screen prior to releasing your applications to your users.

The GetMaterial function collects all the material elements in the model using the
OfCategory method just the same as the GetMaterialLINQ function. The only difference
between these two functions is how the name criteria are searched within the resulting
collection gathered from the Materials category. The traditional method requires that each
element be tested individually by iteration gathering matching elements as it goes. The LINQ
function does not have to iterate through the list of elements. GetMaterialLINQ queries the
list using a single query command and as a result is quite a bit quicker at gathering materials
by name.

Accessing the ProjectInfo data (Must know)
The ProjectInfo data comprises several visible system parameters by default. Some of
these parameters are formatted as text and others are special data parameters such as
the parameters that store the energy settings. In this recipe, we will learn how to access the
project information object and read some if its data. The ProjectInfo object is the same
object that you access from the user interface under the Manage tab by clicking on the
Project Information command button.

Getting ready
Create a new directory in your solution file named Ch4 Data and place each of the samples
we create in this recipe here. Since there is only one project information object per model,
finding and reading it is fairly straight forward.

We will also need to update our Revit2013Samples_VB.addin file with our new command.
Add the following to this file inside the RevitAddIns tag being careful not to nest inside any
other command or application:

 <AddIn Type="Command">
 <Text>
 Sample - Ch4 Project Info
 </Text>
 <Assembly>
 Revit2013Samples_VB.dll
 </Assembly>

Instant Autodesk Revit 2013 Customization with .NET How-to

30

 <FullClassName>
 Revit2013Samples_VB.CommandProjectInfo
 </FullClassName>
 <ClientId>14a6cba3-a563-4dc7-a126-47fe5c9a11a1</ClientId>
 <VendorId>XXXX</VendorId>
 <VendorDescription>
 Packt Publishing Samples for
 'Autodesk Revit 2013 Customization with .NET'
 </VendorDescription>
 </AddIn>

How to do it...
1.	 Add a new class named CommandProjectInfo in the Ch4 Data directory and

paste the CommandBoilerPlate code into this new class being careful to keep
the name for this new class CommandProjectInfo.

2.	 Add the ProjectInfo filtering and reporting code just beneath the line that
reads ' Begin Code Here:
 Dim m_doc As Document
 m_doc = _
 commandData.Application.ActiveUIDocument.Document

 ' Collect the ProjectInfo Object
 Dim m_col As New FilteredElementCollector(m_doc)
 m_col.OfClass(GetType(ProjectInfo))

 ' Get the First
 Dim m_pi As ProjectInfo
 m_pi = m_col.First

 ' Read a Few Properties
 Dim m_msg As String = ""
 m_msg += "Bldg. Name: " & m_pi.BuildingName & vbCr
 m_msg += "Bldg. Address: " & m_pi.Address & vbCr
 m_msg += "Client Name: " & m_pi.ClientName & vbCr
 m_msg += "Author: " & m_pi.Author

 ' Dispay the Results in a Revit Taskdialog
 Using m_td As New TaskDialog("Ch4 Project Info:")
 m_td.MainInstruction = "Project Information:"
 m_td.MainContent = m_msg
 m_td.Show()
 End Using

Instant Autodesk Revit 2013 Customization with .NET How-to

31

3.	 Open an .rvt file and run the sample in the debugger. You will get a dialog like the
one shown in the following screenshot displaying the ProjectInfo data for the
active model.

How it works...
Did you notice that we did not initiate a transaction for this sample? This is because
everything we did was read only and no changes were being made to the model. This was
about the simplest data access sample that you will see using the Revit API. Each of the data
values that we reported were all text and accessible as properties rather than Parameter
class objects. We first got a reference to the current document so that we could build a
FilteredElementCollector for gathering up the ProjectInfo object. Once we had the
element we wanted to report data from we concatenated a few data strings of interest and
displayed the results in a TaskDialog form.

Extracting data (Should know)
You will undoubtedly find yourself in a situation where you need to get data out of the model.
The format in which you export the data is purely up to you, but the means for reading the
data basically remain the same. We will build a command in this recipe that exports all room
data to a Comma Separated Values (CSV) file.

There are a couple of things to consider when exporting data from parameters other than text.
The ElementID parameters can export either the seven digit numerical representation of
ElementID or with a little trickery can export the name of the element that it points to.

Numerical parameters have a similar capability where they can be exported as either the
decimal representation for their values or the human readable string representation as seen
in the user interface. An example of this would be exporting an area parameter as either 4.0
or as 4.0 SF. Our sample will export both values for these kinds of situations.

Instant Autodesk Revit 2013 Customization with .NET How-to

32

Getting ready
This sample will get a little trickier, so we will be creating a couple of helper classes to provide
all of our CSV and parameter functionality. We will save all of the files that we create in this
recipe in our Ch4 Data directory within our solution.

We will also edit our Revit2013Samples_VB.addin file again so that our new command
will load into Revit. Add the following code to this file inside the RevitAddIns tag being
careful not to nest inside any other command or application:

 <AddIn Type="Command">
 <Text>
 Sample - Ch4 Export Data
 </Text>
 <Assembly>
 Revit2013Samples_VB.dll
 </Assembly>
 <FullClassName>
 Revit2013Samples_VB.CommandExportData
 </FullClassName>
 <ClientId>14a6cba3-a563-4dc7-a026-47fe5c9a11a1</ClientId>
 <VendorId>XXXX</VendorId>
 <VendorDescription>
 Packt Publishing Samples for
 'Autodesk Revit 2013 Customization with .NET'
 </VendorDescription>
 </AddIn>

How to do it...
1.	 Add a new class named clsExport. This class is just a simple StreamWriter class

that allows various separator formats such as comma, semicolon, and tab:
Imports System.IO

Public Class clsExport

 Private _separator As String

 Public Property FilePath As String

 ''' <summary>
 ''' Constructor
 ''' </summary>
 Public Sub New(p_path As String,
 p_model As String,

Instant Autodesk Revit 2013 Customization with .NET How-to

33

 p_headers As List(Of String),
 Optional p_sep As String = ",")

 ' Widen Scope
 FilePath = p_path
 _separator = p_sep

 ' Create the File
 Using sw As New StreamWriter(FilePath, False)

 ' Write Date and Title
 sw.WriteLine("Rooms from Model: " & p_model)
 sw.WriteLine("Exported: " & Now().ToLongTimeString)
 sw.WriteLine("")

 End Using

 ' Write the Headers
 WriteLine(p_headers)

 End Sub

 ''' <summary>
 ''' Append a Line to the Log
 ''' </summary>
 Public Sub WriteLine(p_params As List(Of String))

 ' Append the Line
 Using sw As New StreamWriter(FilePath, True)

 ' Comma Separated Values
 Dim m_row As String = ""

 For Each x As String In p_params

 ' Append the Separator
 m_row += x & _separator

 Next

 ' Write Line
 sw.WriteLine(m_row)

 End Using

 End Sub

End Class

Instant Autodesk Revit 2013 Customization with .NET How-to

34

2.	 Add a new class named clsParameter and add the functions that can read
the parameter data in string and data formats as shown here. We will leave the
SetValue function empty for now:
Imports Autodesk.Revit.DB

''' <summary>
''' Helper class used to work with parameters
''' </summary>
Public Class clsParameter

 Private _parameter As Parameter

 ''' <summary>
 ''' Constructor
 ''' </summary>
 Public Sub New(ByVal p As Parameter)

 ' Widen Scope
 _parameter = p

 End Sub

 ''' <summary>
 ''' The parameter reference
 ''' </summary>
 Public ReadOnly Property ParameterObject() As Parameter
 Get
 Return _parameter
 End Get
 End Property

 ''' <summary>
 ''' Returns value of the parameter
 ''' </summary>
 Public Property Value() As String
 Get
 Try
 Dim v As String = GetValue(False)
 If Not String.IsNullOrEmpty(v) Then
 Return v
 Else
 Return ""
 End If
 Catch
 Return Nothing
 End Try

Instant Autodesk Revit 2013 Customization with .NET How-to

35

 End Get
 Set(ByVal v As String)
 Try
 SetValue(v, False)
 Catch
 End Try
 End Set
 End Property

 ''' <summary>
 ''' Returns value of the parameter
 ''' as a string
 ''' </summary>
 Public Property ValueString As String
 Get
 Try
 Dim v As String = GetValue(True)
 If Not String.IsNullOrEmpty(v) Then
 Return v
 Else
 Return ""
 End If
 Catch
 Return Nothing
 End Try
 End Get
 Set(ByVal v As String)
 Try
 SetValue(v, True)
 Catch
 End Try
 End Set
 End Property

 ''' <summary>
 ''' Set a value to a parameter
 ''' </summary>
 Private Sub SetValue(ByVal value As Object,
 asString As Boolean)
 ' Cannot edit readonly
 If _parameter.IsReadOnly Then Exit Sub

 Try
 ' Storage Type

Instant Autodesk Revit 2013 Customization with .NET How-to

36

 Select Case _parameter.StorageType
 Case StorageType.Double
 If asString = True Then
 _parameter.SetValueString _
 (TryCast(value, String))
 Else
 _parameter.Set(value)
 End If

 Case StorageType.ElementId
 Dim m_eid As ElementId
 m_eid = DirectCast((value), ElementId)
 _parameter.Set(m_eid)

 Case StorageType.Integer
 _parameter.SetValueString _
 (TryCast(value, String))

 Case StorageType.None
 _parameter.SetValueString _
 (TryCast(value, String))

 Case StorageType.String
 _parameter.Set(TryCast(value, String))
 Exit Select

 End Select
 Catch
 End Try

 End Sub

 ''' <summary>
 ''' Get the value of a parameter
 ''' </summary>
 Private Function GetValue(asString As Boolean) As String

 ' Return the Value
 Select Case _parameter.StorageType
 Case StorageType.Double
 If asString = True Then
 Return _parameter.AsValueString
 Else
 Return _parameter.AsDouble.ToString
 End If

Instant Autodesk Revit 2013 Customization with .NET How-to

37

 Case StorageType.ElementId
 If asString = True Then
 ' Get the Element's Name
 Dim m_eid As New ElementId _
 (_parameter.AsElementId.IntegerValue)
 Dim m_obj As Element
 m_obj =
 _parameter.Element.Document.GetElement(m_eid)
 Return m_obj.Name
 Else
 Return _parameter.AsElementId.ToString
 End If

 Case StorageType.Integer
 Return _parameter.AsInteger.ToString

 Case StorageType.None
 Return _parameter.AsValueString

 Case StorageType.String
 Return _parameter.AsString

 Case Else
 Return ""

 End Select

 End Function

End Class

3.	 Add yet another command class copying the CommandBoilerPlate code naming
this new class CommandExportData.

4.	 Add the following code beneath the line ' Begin Code Here to collect all rooms
and cast them into a list of Architecture.Room elements:
 Dim m_doc As Document
 m_doc =
 commandData.Application.ActiveUIDocument.Document

 ' Get the Collection of Rooms
 Dim m_col As New FilteredElementCollector(m_doc)
 m_col.OfCategory(BuiltInCategory.OST_Rooms)

Instant Autodesk Revit 2013 Customization with .NET How-to

38

5.	 Next construct the clsExport object that we will use to export the data to the file.
We will use a comma as a column separator in this case:
 ' Get First Room, as a Room
 Dim rm As Architecture.Room
 rm = TryCast(m_col.FirstElement, Architecture.Room)

 ' List of Parameter Names
 Dim params As New List(Of String)
 For Each p As Parameter In rm.Parameters
 If p.StorageType = StorageType.ElementId Or
 p.StorageType = StorageType.Double Then
 params.Add("text_" & p.Definition.Name)
 params.Add(p.Definition.Name)
 Else
 params.Add(p.Definition.Name)
 End If
 Next

 ' The Data File
 Dim m_fname As String
 m_fname = GetFolderPath _
 (Environment.SpecialFolder.MyDocuments)
 m_fname += "\PACKTdataExport.csv"
 Dim m_csv As New clsExport(m_fname,
 m_doc.PathName,
 params,
 ",")

6.	 Now we need to iterate over each room and process each parameter:
 ' Iterate Each Room
 For Each elem In m_col.ToElements

 ' Cast as a room
 Dim r As Architecture.Room = _
 TryCast(elem, Architecture.Room)

 If Not r Is Nothing Then

 ' Sore the Values
 Dim m_values As New List(Of String)

 ' Maintain the Order of Values and Header
 For Each x As String In params

Instant Autodesk Revit 2013 Customization with .NET How-to

39

 ' Parameter
 Dim m_p As Parameter = Nothing

 ' Parameter Helper
 Dim m_parameter As clsParameter = Nothing

 ' Parameter Name
 If x.StartsWith("text_") Then
 m_p = elem.Parameter(Mid(x, 6))
 m_parameter = New clsParameter(m_p)
 m_values.Add(m_parameter.ValueString)
 Else
 m_p = elem.Parameter(x)
 m_parameter = New clsParameter(m_p)
 m_values.Add(m_parameter.Value)
 End If

 Next

 ' Write the Line
 m_csv.WriteLine(m_values)

 End If

 Next

7.	 The last part we'll add is a means to report to the user what we just did and where
the file was saved:
 ' Tell the user what happened
 Using td As New TaskDialog("Room Data Export")
 td.MainInstruction = m_col.ToElements.Count.ToString &
 " Rooms Processed..."
 td.MainContent = m_csv.FilePath
 td.Show()
 End Using

8.	 Open the resulting CSV file and take notice of the parameters prefixed with text_
and their raw values and notice how they represent basically the same data but in
different formats.

Instant Autodesk Revit 2013 Customization with .NET How-to

40

How it works...
The first thing the command does is collect all of the rooms as the Element objects and
cast them into a list of the Room classes. We then iterate over each Room and read each
parameter and store the values into our clsExport class that ultimately write them out
to the .csv file. Double and ElementID formatted parameters are exported in both
their numerical representations and their string representations with a header prefix of
string_ for the string representation so you can see the difference between their absolute
values and their string representations.

The clsExport class is quite simple in that it only initiates a StreamWriter class and
makes calls to append new lines to this file. The header is written first containing the names
of each parameter being exported. Each row sent to this class later using the WriteLine
routine adds the data for a room until all rooms have been processed.

The clsParameter class is a little more complicated yet still fairly straight forward. The two
public properties for Value and ValueString do what they sound like they should in that
Value returns the absolute value for a parameter while the ValuString property returns
the user interface string representation of the parameter's value.

Changing values (Must know)
Revit parameters store data in one of four basic formats each requiring a slightly different
means of modifying its data. The code sample that we will build in this recipe simplifies the
modification of parameter data regardless of the parameter's data format.

Getting ready
Update the Revit2013Samples_VB.addin file to enable the command in the Revit
environment as shown in the following code:

 <AddIn Type="Command">
 <Text>
 Sample - Ch4 Modify Data
 </Text>
 <Assembly>
 Revit2013Samples_VB.dll
 </Assembly>
 <FullClassName>
 Revit2013Samples_VB.CommandModifyData
 </FullClassName>
 <ClientId>14a6cba3-a563-4dc7-a026-47fe5c9a11a2</ClientId>
 <VendorId>XXXX</VendorId>

Instant Autodesk Revit 2013 Customization with .NET How-to

41

 <VendorDescription>
 Packt Publishing Samples for
 'Autodesk Revit 2013 Customization with .NET'
 </VendorDescription>
 </AddIn>

How to do it...
1.	 Open the clsParameter class and add the following code to the empty

SetValue function:
 ''' <summary>
 ''' Set a value to a parameter
 ''' </summary>
 Private Sub SetValue(ByVal value As Object,
 asString As Boolean)

 ' Cannot edit readonly
 If _parameter.IsReadOnly Then Exit Sub

 Try
 ' Storage Type
 Select Case _parameter.StorageType
 Case StorageType.Double
 If asString = True Then
 _parameter.SetValueString _
 (TryCast(value, String))
 Else
 _parameter.Set(value)
 End If

 Case StorageType.ElementId
 Dim m_eid As ElementId
 m_eid = DirectCast((value), ElementId)
 _parameter.Set(m_eid)

 Case StorageType.Integer
 _parameter.SetValueString _
 (TryCast(value, String))

 Case StorageType.None
 _parameter.SetValueString _
 (TryCast(value, String))

 Case StorageType.String
 _parameter.Set(TryCast(value, String))
 Exit Select

Instant Autodesk Revit 2013 Customization with .NET How-to

42

 End Select
 Catch

 End Try

 End Sub

2.	 Create a new class named CommandModifyData and paste the boilerplate code
from our CommandBoilerPlate class being careful to keep our new class named
CommandModifyData.

3.	 Add the following collector code to get all rooms and iterate over each of the
comments parameters changing its value to the room's UniqueId:
 Dim m_doc As Document
 m_doc = _
 commandData.Application.ActiveUIDocument.Document

 Dim m_col As New FilteredElementCollector(m_doc)
 m_col.OfCategory(BuiltInCategory.OST_Rooms)

 ' Transaction
 Using t As New Transaction(m_doc,
 "Modify Parameter")

 ' Start the Transaction
 If t.Start Then

 ' Iterate Each Element
 For Each elem As Element In m_col.ToElements

 ' Get the Comments Parameter
 Dim m_p As Parameter
 m_p = elem.Parameter("Comments")

 ' Helper
 Dim m_param As New clsParameter(m_p)

 ' Change the Value
 m_param.Value = elem.UniqueId.ToString

 Next

 End If

 ' Commit
 t.Commit()

 End Using

 ' Inform the User

Instant Autodesk Revit 2013 Customization with .NET How-to

43

 Using td As New TaskDialog("Modify Parameters")
 td.MainInstruction = "Changed Values"
 td.MainContent = m_col.ToElements.Count.ToString &
 " room comments edited..."
 td.Show()
 End Using

4.	 Select a room element after you run this sample and inspect the contents of the
comments parameter. The value that you see is the UniqueId for the room element.

How it works...
We had to initiate a new transaction in this sample because we were making changes to the
model. It is always recommended to trap your transactions in a Using statement and starting
it with an If statement to avoid the rare yet possible occasions where a transaction may
not start prior to attempting to make changes to the model. The SetValue function in our
clsParameter function accepts an object that in this case was just a simple text value and
passes it into the comments parameter of each room.

Adding and removing parameters
(Become an expert)

You will occasionally run into situations where you need to add parameters to a model.
There's not yet a way to add general parameters to a project model, but you can definitely
add parameters from a shared parameter file and bind them to any category you like. We will
build a quick command in this recipe demonstrating the concept of adding parameters from a
shared parameter file and binding them to a category by name.

Getting ready
We need to edit our Revit2013Samples_VB.addin file again so that our new command
will load into Revit. Add the following inside the RevitAddIns tag being careful not to nest
inside any other command or application:

 <AddIn Type="Command">
 <Text>
 Sample - Ch4 Add Parameters
 </Text>
 <Assembly>
 Revit2013Samples_VB.dll
 </Assembly>
 <FullClassName>
 Revit2013Samples_VB.CommandAddParameter

Instant Autodesk Revit 2013 Customization with .NET How-to

44

 </FullClassName>
 <ClientId>14a6cba3-a563-4dc7-a026-47fe5c9a11a3</ClientId>
 <VendorId>XXXX</VendorId>
 <VendorDescription>
 Packt Publishing Samples for
 'Autodesk Revit 2013 Customization with .NET'
 </VendorDescription>
 </AddIn>

How to do it…
1.	 Add another command class named CommandAddParameter and copy the

CommandBoilerPlate code in being careful to maintain the new class name
as CommandAddParameter.

2.	 Next we create a reference to the shared parameter file as a DefinitionFile and
bind each parameter in the file to the Rooms category. Since we are making changes
to elements in the model we must trap our code within a transaction block:
 Dim m_app As UIApplication
 m_app = commandData.Application
 Dim m_doc As Document
 m_doc = m_app.ActiveUIDocument.Document

 ' Active Shared Parameter
 Dim m_defFile As DefinitionFile
 m_defFile = _
 m_app.Application.OpenSharedParameterFile()

 ' Active Shared Parameter File?
 If Not m_defFile Is Nothing Then

 ' Transaction
 Using t As New Transaction(m_doc,
 "Add Parameters")
 If t.Start Then

 ' Create the Rooms Category Set
 Dim m_cSet As CategorySet
 m_cSet = m_app.Application.Create.NewCategorySet
 Dim m_rm_c As Category
 m_rm_c = m_doc.Settings.Categories.Item("Rooms")
 m_cSet.Insert(m_rm_c)

 ' Add all shared parameters to
 For Each g As DefinitionGroup In m_defFile.Groups
 For Each d As Definition In g.Definitions

Instant Autodesk Revit 2013 Customization with .NET How-to

45

 ' Bind to Category
 Dim m_ibind As InstanceBinding
 m_ibind = _
 m_app.Application.Create.NewInstanceBinding(m_cSet)
 m_doc.ParameterBindings.Insert(d, m_ibind)

 Next

 Next

 ' Commit
 t.Commit()

 End If
 End Using

 Else

 ' No Active Shared Parameter File
 MsgBox("No Active Shared Parameter File!",
 MsgBoxStyle.Exclamation,
 ":(")
 Return Result.Cancelled

 End If

3.	 Run the command and then select a room element in the model and each parameter
in you're the shared parameter file has been bound to the rooms category.

How it works...
As with most of the commands we've done previously, we first get a reference to the active
document, but in this one we also get a reference to the application object. The next thing we
do is check to see if there is an active shared parameter file loaded and if there is we start
iterating over each group in the file and load each parameter we find into the category set
that ultimately gets bound to the category.

A complex design model can often comprise hundreds if not thousands of views.
The good news is that the views required from one project to another are fairly consistent.
Sheet and view creation is definitely an area of automation that can gain you a serious ROI
if planned properly.

In the following few recipes, we will build a few sample commands demonstrating how to use
the new ViewPlan methods, and create schedules, as well as how to create sheets. After we
have the concepts for creating views down, we will learn how to place views on sheets.

Instant Autodesk Revit 2013 Customization with .NET How-to

46

Creating plan views (Must know)
The method for generating new plan views has changed quite a bit in the 2013 API. The new
way is far cleaner and from what I can tell is actually faster as well. We are about to create a
simple command sample that will create a floor plan, ceiling plan, and an area plan for each
view type available in the active model for each level.

Getting ready
We just started a new recipe, so let's keep the magic going by creating a new directory in our
solution named Ch5 Document and place each of this recipe's code samples in it.

As always when adding a new command class to the project we need to update the
Revit2013Samples_VB.addin file so it can be accessed from the Revit session. Add the
following inside the RevitAddIns tag being careful not to nest it inside any other Command,
Application, or DBApplication:

 <AddIn Type="Command">
 <Text>
 Sample - Ch5 Views
 </Text>
 <Assembly>
 Revit2013Samples_VB.dll
 </Assembly>
 <FullClassName>
 Revit2013Samples_VB.CommandViews
 </FullClassName>
 <ClientId>14a6cba3-a563-4dc7-a026-47fe5c9a11a4</ClientId>
 <VendorId>XXXX</VendorId>
 <VendorDescription>
 Packt Publishing Samples for
 'Autodesk Revit 2013 Customization with .NET'
 </VendorDescription>
 </AddIn>

How to do it...
1.	 Add a new class named CommandViews and copy in the code from our

CommandBoilerPlate sample from the Getting started with the Autodesk Revit
2013 API (Must know) recipe. Be careful to keep the name of this new class
as CommandViews.

Instant Autodesk Revit 2013 Customization with .NET How-to

47

2.	 We start by adding the code that gains us access to the active Application
and Document object. Add the following just beneath the line that reads ' Begin
Code Here:
 Dim m_app As UIApplication
 m_app = commandData.Application
 Dim m_doc As Document
 m_doc = m_app.ActiveUIDocument.Document

3.	 Next we must collect a list of each of the ViewFamilyType elements in our model
by using FilteredElementCollector. The ViewFamilyType argument is a new
required argument for Revit 2013 when creating plan views:
 ' Get List of View Types
 Dim m_colVT As New FilteredElementCollector(m_doc)
 m_colVT.OfClass(GetType(ViewFamilyType))
 Dim m_vt As New List(Of ViewFamilyType)
 For Each x As ViewFamilyType In m_colVT.ToElements
 m_vt.Add(x)
 Next

4.	 The next thing we need to do is gather each of the levels so that we can create a view
for each level in the model:
 ' Get List of Levels
 Dim m_colL As New FilteredElementCollector(m_doc)
 m_colL.OfCategory(BuiltInCategory.OST_Levels)
 Dim m_levels As New List(Of Level)
 For Each x In m_colL.ToElements
 If TypeOf x Is Level Then
 m_levels.Add(x)
 End If
 Next

5.	 We are making changes to the model so we will need to start a new transaction:
 ' New Transaction
 Using t As New Transaction(m_doc, "Create Views")

 ' Start the Transaction
 If t.Start Then

 ' Success and Error List
 Dim m_s As New List(Of String)
 Dim m_e As New List(Of String)

Instant Autodesk Revit 2013 Customization with .NET How-to

48

6.	 Now that we have all of the Level and ViewFamilyType elements, we can iterate
over the levels and then create the views that we are interested in:
 ' Create a Plan of each type per level
 For Each l As Level In m_levels

 ' Views of Plan or Ceiling Only
 For Each vt As ViewFamilyType In m_vt

 ' FloorPlan, CeilingPlan, or AreaPlan Only
 If vt.ViewFamily = ViewFamily.CeilingPlan Or
 vt.ViewFamily = ViewFamily.FloorPlan Or
 vt.ViewFamily = ViewFamily.AreaPlan Then

 Try

 ' Create the Plan View
 Dim m_fp As ViewPlan
 m_fp = ViewPlan.Create(m_doc, vt.Id, l.Id)

 ' Rename the View
 m_fp.Name = l.Name.ToUpper & " " &
 vt.Name.ToUpper

 m_s.Add(l.Name.ToUpper & " " &
 vt.Name.ToUpper)

 Catch ex As Exception

 ' Record Errors
 m_e.Add(ex.Message & ": " &
 l.Name.ToUpper & " " &
 vt.Name.ToUpper)

 End Try

 End If

 Next

 Next

7.	 Display the results to the user for what we just did and commit the transaction:
 ' Report Views Created
 If m_s.Count > 0 Then
 Using m_td As New TaskDialog("Success!!")
 m_td.MainInstruction = "Created Views :)"
 For Each x In m_s
 m_td.MainContent += x & vbCr
 Next

Instant Autodesk Revit 2013 Customization with .NET How-to

49

 m_td.Show()
 End Using
 End If

 ' Report Errors if Any
 If m_e.Count > 0 Then
 Using m_td As New TaskDialog("Some Errors")
 m_td.MainInstruction = "Issues with Views:"
 For Each x In m_e
 m_td.MainContent += x & vbCr
 Next
 m_td.Show()
 End Using
 End If

 ' Commit
 t.Commit()

 End If

 End Using

8.	 Open the rac_advanced_sample_project.rvt from the sample code bundle
and run the command. You will get a dialog showing you the views that it generated
similar to this.

Instant Autodesk Revit 2013 Customization with .NET How-to

50

How it works...
The first two groups of elements that we collect in the preceding sample are critical for adding
new plan views to the model. A Level argument is required since it tells Revit where in the
model you want the view to appear. The ViewFamilyType is a new argument required for
plan views and is a nice addition because it allows you control over which view type to use
for the view.

The sample then iterates over each Level in the model and creates a plan view for each
FloorPlan, CeilingPlan, and AreaPlan type that is loaded in the model. The new
Create method for generating plan views does not allow for a naming argument, so you
need to maintain a reference to the view while creating it so that you can rename it later.

Creating a schedule (Become an expert)
Creating a schedule with the API is a new feature in 2013. We will build a schedule for rooms
in this recipe showing each of the available room parameters.

Getting ready
We need to update the Revit2013Samples_VB.addin file so it can be accessed from
the Revit session. Add the following inside the RevitAddIns tag being careful not to nest
it inside any other Command, Application, or DBApplication:

 <AddIn Type="Command">
 <Text>
 Sample - Ch5 Schedule
 </Text>
 <Assembly>
 Revit2013Samples_VB.dll
 </Assembly>
 <FullClassName>
 Revit2013Samples_VB.CommandSchedule
 </FullClassName>
 <ClientId>14a6cba3-a563-4dc7-a026-47fe5c9a11a5</ClientId>
 <VendorId>XXXX</VendorId>
 <VendorDescription>
 Packt Publishing Samples for
 'Autodesk Revit 2013 Customization with .NET'
 </VendorDescription>
 </AddIn>

Instant Autodesk Revit 2013 Customization with .NET How-to

51

How to do it…
1.	 Create a new class named CommandSchedule and copy the code from our

CommandBoilerPlate sample.

2.	 Just beneath the line ' Begin Code Here, we begin by adding the code that
gains us access to the Application and Document objects:
 Dim m_app As UIApplication
 m_app = commandData.Application
 Dim m_doc As Document
 m_doc = m_app.ActiveUIDocument.Document

3.	 Then since we are making changes to the model, we need to trap the rest inside
a new transaction:
 ' New Transaction
 Using t As New Transaction(m_doc, "Create Schedule")

 ' Start the Transaction
 If t.Start Then

4.	 With a transaction started, we first create the Schedule object using the
room category:
 ' Add Room Schedule
 Dim m_vs As ViewSchedule
 Dim m_cat As Category = Nothing
 For Each c As Category In m_doc.Settings.Categories
 If c.Name.ToLower = "rooms" Then
 m_cat = c
 Exit For
 End If
 Next
 m_vs = ViewSchedule.CreateSchedule(m_doc, m_cat.Id)
 m_vs.Name = "PACKT Room Schedule"

5.	 So far we've only built an empty schedule. We need to get the schedule's definition
object next so we can use it to add fields and sorting. We use the definition object
to add fields and sorting:
 ' Get the Definition
 Dim m_sd As ScheduleDefinition
 m_sd = m_vs.Definition

 ' Append Four Fields to Definition
 Dim m_areaField As ScheduleField
 m_areaField = m_sd.AddField(_

Instant Autodesk Revit 2013 Customization with .NET How-to

52

 New SchedulableField(ScheduleFieldType.Instance,
 New ElementId(BuiltInParameter.ROOM_NUMBER)))
 m_sd.AddField(New _
 SchedulableField(ScheduleFieldType.Instance,
 New ElementId(BuiltInParameter.ROOM_NAME)))
 m_sd.AddField(New _
 SchedulableField(ScheduleFieldType.ViewBased,
 New ElementId(BuiltInParameter.ROOM_AREA)))
 m_sd.AddField(New _
 SchedulableField(ScheduleFieldType.Instance,
 New ElementId(BuiltInParameter.ROOM_DEPARTMENT)))

 ' Sort Ascending by Number
 Dim m_sort As New List(Of ScheduleSortGroupField)
 Dim m_numberSort As New ScheduleSortGroupField()
 m_numberSort.FieldId = m_areaField.FieldId
 m_numberSort.SortOrder = ScheduleSortOrder.Ascending
 m_sort.Add(m_numberSort)
 m_sd.SetSortGroupFields(m_sort)

6.	 If all goes well, we can report to the user that we've created a schedule and commit
the transaction:
 ' Report to User
 Using m_td As New TaskDialog("Success!!')
 m_td.MainInstruction = "Created Schedule :)"
 m_td.MainContent = "Sorted by Room Number"
 m_td.Show()
 End Using

 ' Commit
 t.Commit()

 End If

 End Using

Instant Autodesk Revit 2013 Customization with .NET How-to

53

7.	 Open the rac_basic_sample_project.rvt from the sample code bundle and
run the command. Take a look at the room schedule named PACKT Room Schedule
that was just created.

How it works…
Creating a schedule is the easy part but requires that you add fields afterwards using its
Definition object. The AddField method of the Definition object allows you to add
various kinds of schedulable data just like you can in the user interface.

Did you notice that the ROOM_AREA parameter's ScheduleFieldType was set to
ViewBased while all the others were set to Instance? This is because a room's area is not a
data object that is entered into the room element but is rather a condition of the room that is
calculated spatially in the view.

Sorting is fairly straightforward and supports multiple fields of sorting. We only added one
in this sample to keep it simple while demonstrating how to use this feature. The only field
we added to the sort list was the ROOM_NUMBER parameter so that all of the records in the
schedule would sort by their room number.

Creating sheets and placeholders
(Must know)

Sheets are unfortunately still a necessary element for most BIM projects and can be
a very tedious step in your production cycle. This recipe will cover sheet and placeholder
sheet creation.

Instant Autodesk Revit 2013 Customization with .NET How-to

54

Getting ready
Hopefully by now you are an expert at this step. We need to first update the
Revit2013Samples_VB.addin file so it can be accessed from the Revit session. Add the
following inside the RevitAddIns tag being careful not to nest it inside any other Command,
Application, or DBApplication:

 <AddIn Type="Command">
 <Text>
 Sample - Ch5 Sheets
 </Text>
 <Assembly>
 Revit2013Samples_VB.dll
 </Assembly>
 <FullClassName>
 Revit2013Samples_VB.CommandSheets
 </FullClassName>
 <ClientId>14a6cba3-a563-4dc7-a026-47fe5c9a11a6</ClientId>
 <VendorId>XXXX</VendorId>
 <VendorDescription>
 Packt Publishing Samples for
 'Autodesk Revit 2013 Customization with .NET'
 </VendorDescription>
 </AddIn>

How to do it...
1.	 Create a new class named CommandSheets and copy the code from our

CommandBoilerPlate sample.

2.	 We start by adding the code that gains us access to the active document object.
Add the following just beneath the ' Begin Code Here line:
 Dim m_app As UIApplication
 m_app = commandData.Application
 Dim m_doc As Document
 m_doc = m_app.ActiveUIDocument.Document

3.	 Next we need to get the available title block family types. Inform the user if we do not
find any because we will not be able to create real sheets without one:
 ' Get the Titleblocks
 Dim m_col As New FilteredElementCollector(m_doc)
 m_col.WhereElementIsElementType()
 m_col.OfCategory(BuiltInCategory.OST_TitleBlocks)
 Dim m_tb As New List(Of Element)

Instant Autodesk Revit 2013 Customization with .NET How-to

55

 m_tb = m_col.ToElements

 ' Prompt if no Title Blocks
 If m_tb.Count = 0 Then
 MsgBox("No Title Block Families Found in Model!" &
 vbCr &
 "Load a Title Block Family to Add Sheets",
 MsgBoxStyle.Information,
 "Cannot Create Sheets")
 End If

4.	 I sometimes like to use error and success lists to report to the user what my code
does. Add a couple of simple string lists for tracking our success and failures as we
churn through the rest of the command:
 ' Success and Failures
 Dim m_s As New List(Of String)
 Dim m_e As New List(Of String)

5.	 We're making changes to the model so we need to start a transaction:
 ' Transaction
 Using t As New Transaction(m_doc, "Create Sheets")

 If t.Start Then

6.	 We will first build a single placeholder sheet. After that we will build one real sheet
for each of the loaded title block types in the active model:
 ' The Sheet Object
 Dim m_vs As ViewSheet

 Try

 ' Create a Placeholder Sheet
 m_vs = ViewSheet.CreatePlaceholder(m_doc)
 m_vs.Name = "PACKT Placeholder!"
 m_vs.SheetNumber = "X.X"

 ' Record Success
 m_s.Add("Created Placeholder: " &
 m_vs.SheetNumber)

 Catch ex As Exception

 ' Record Failure
 m_e.Add("Placeholder Error: " &
 ex.Message)

Instant Autodesk Revit 2013 Customization with .NET How-to

56

 End Try

 ' Each Titleblock
 For Each tb In m_tb

 Try

 ' Create Sheet
 m_vs = ViewSheet.Create(m_doc, tb.Id)
 m_vs.Name = "PACKT Sheet from Titleblock! " &
 tb.Name
 m_vs.SheetNumber = "PACKT " &
 tb.Name

 ' Record Success
 m_s.Add("Created Sheet: " &
 m_vs.SheetNumber)

 Catch ex As Exception

 ' Record Failure
 m_e.Add("Sheet Error: " &
 ex.Message)

 End Try

 Next

7.	 The last part commits the transaction and reports the results to the user:
 ' Commit
 t.Commit()

 ' Report Sheets Created
 If m_s.Count > 0 Then
 Using m_td As New TaskDialog("Success!!")
 m_td.MainInstruction = "Created Sheets :)"
 For Each x In m_s
 m_td.MainContent += x & vbCr
 Next
 m_td.Show()
 End Using
 End If

 ' Report Errors if Any
 If m_e.Count > 0 Then
 Using m_td As New TaskDialog("Some Errors")
 m_td.MainInstruction = "Issues with Sheets:"
 For Each x In m_e

Instant Autodesk Revit 2013 Customization with .NET How-to

57

 m_td.MainContent += x & vbCr
 Next
 m_td.Show()
 End Using
 End If

 End If

 End Using

8.	 Open the rac_advanced_sample_project.rvt from the sample code bundle
and run the command:

How it works...
The methods for creating both real and placeholder sheets are accessible from the
ViewSheet class. Both methods result in a ViewSheet object that can then be used to
change the name, number, or any parameter of the object that you choose.

We created one placeholder sheet and assigned it a number of X.X. The process for creating
real sheets is a little more interesting. You can create a sheet with any title block in the model
you want but you must have a valid title block element to create a real sheet. We iterated over
each of the tile block families available in the model and created a sheet for each one.

There's more...
The list of sheets that we created in this sample was quite basic but there's really
nothing stopping us from making hundreds or even thousands of sheets using this method.
Imagine the possibilities if you were to build a tool using these concepts that reads data
from an external source such as a database or spreadsheet. The time savings possible are
virtually limitless.

Instant Autodesk Revit 2013 Customization with .NET How-to

58

Placing views on sheets (Become an expert)
Now that we know how to create views as well as sheets we can start to build some
meaningful documentation. We will build a sample command in this recipe that places the
first available floor plan view onto the active sheet. You will need to have a sheet view active
when running this command.

Getting ready
We need to first update the Revit2013Samples_VB.addin file so it can be accessed from
the Revit session. Add the following inside the RevitAddIns tag being careful not to nest it
inside any other Command, Application, or DBApplication:

 <AddIn Type="Command">
 <Text>
 Sample - Ch5 Views on Sheets
 </Text>
 <Assembly>
 Revit2013Samples_VB.dll
 </Assembly>
 <FullClassName>
 Revit2013Samples_VB.CommandViewsOnSheets
 </FullClassName>
 <ClientId>14a6cba3-a563-4dc7-a026-47fe5c9a11a7</ClientId>
 <VendorId>XXXX</VendorId>
 <VendorDescription>
 Packt Publishing Samples for
 'Autodesk Revit 2013 Customization with .NET'
 </VendorDescription>
 </AddIn>

How to do it...
1.	 Add a new class named CommandViewsOnSheets and copy in the code from our

CommandBoilerPlate sample from the Getting started with the Autodesk Revit
2013 API (Must know) recipe. Be careful to keep the name of this new class as
CommandViewsOnSheets.

2.	 We start again by adding the code that gains us access to the active document object.
Add the following code just beneath the line that reads ' Begin Code Here:
 Dim m_app As UIApplication
 m_app = commandData.Application
 Dim m_doc As Document
 m_doc = m_app.ActiveUIDocument.Document

Instant Autodesk Revit 2013 Customization with .NET How-to

59

3.	 First we need to collect the list of views in the active model:
 ' Get All Views
 Dim m_colV As New FilteredElementCollector(m_doc)
 m_colV.OfCategory(BuiltInCategory.OST_Views)
 Dim m_views As New List(Of View)
 For Each x As View In m_colV.ToElements
 m_views.Add(x)
 Next

4.	 We're making changes to the model again, so start a new transaction:
 ' New Transaction
 Using t As New Transaction(m_doc, "Create Views")

 If t.Start Then

5.	 Now for the main sequence of code, first check if the active view is a sheet. If we are
in an active sheet we find the first plan view that is not yet on a sheet and place it into
the sheet:
 ' User Reporting
 Dim m_msg As String
 m_msg = "Available Floorplan Not Found to Add"

 ' Is the Current View a Sheet?
 Dim m_v As View = m_doc.ActiveView
 If TypeOf m_v Is ViewSheet Then

 ' Find an Availabe Plan
 For Each v As View In m_views

 ' Add the First Available Plan
 If TypeOf v Is ViewPlan Then

 Try

 ' Can it be added?
 If Viewport.CanAddViewToSheet(m_doc,
 m_v.Id,
 v.Id) Then

 ' Add it
 Viewport.Create(m_doc,
 m_v.Id,
 v.Id,
 New XYZ(1.25, 1.25, 0))

Instant Autodesk Revit 2013 Customization with .NET How-to

60

 m_msg = "Added Floorplan " & v.Name
 Exit For

 End If

 Catch ex As Exception

 m_msg = "Floorplan " & v.Name & " failed!"

 End Try

 End If

 Next

 Else

 ' Failure Message
 message = "You must be in an active sheet " &
 "view for this command"
 Return Result.Failed

 End If

6.	 The last part is committing the transaction and reporting to the user what happened:
 ' Commit
 t.Commit()

 ' Report Views Created
 Using m_td As New TaskDialog("Views on Sheets")
 m_td.MainInstruction = "Results"
 m_td.MainContent = m_msg
 m_td.Show()
 End Using

 End If

 End Using

Instant Autodesk Revit 2013 Customization with .NET How-to

61

7.	 Open the rac_advanced_sample_project.rvt from the sample code bundle
and run the command. Hopefully your sheet now looks like the one shown in the
following figure:

How it works...
First we check if the active view is a sheet. We then iterate over each view in the model
checking to see if it is a ViewPlan and if it is we check to see if it has not yet been placed
onto a sheet by calling CanAddViewToSheet from the Viewport object. If the view is
available to be added onto our new sheet, we add it. The XYZ location that we used for
placing the view onto the sheet was from the centre of the ViewPlan on the sheet's
paper coordinates.

The analysis framework is an interesting feature of the API that can be used to alter the
appearance of elements in the model. People have done all kinds of interesting things with
this framework. One of the more radical demonstrations that I've seen was by Jeremy Tammik
on his popular Building Coder blog where he painted the image from a webcam onto a curved
wall and had it update every so often if the model was idle http://thebuildingcoder.
typepad.com/blog/2010/06/display-webcam-image-on-building-element-
face.html.

Instant Autodesk Revit 2013 Customization with .NET How-to

62

Wall color by length (Become an expert)
We will create a command utilizing the analysis framework to colorize walls based on their
length in this recipe. This command will create a new custom 3D view, set it active, and then
turn everything off in the model leaving only the analysis elements visible. A legend showing
the wall length ranges will be displayed in the lower-left corner of the view with the longer
walls shown in blue and the shorter in red.

Getting ready
Create a new directory in your solution file named Ch6 Analysis and place this code
sample in there. We also need to update the Revit2013Samples_VB.addin file so it can
be accessed from the Revit session. Add the following inside the RevitAddIns tag being
careful to not nest it inside any other Command, Application, or DBApplication:

 <AddIn Type="Command">
 <Text>
 Sample – Ch6 Colour by Wall Length
 </Text>
 <Assembly>
 Revit2013Samples_VB.dll
 </Assembly>
 <FullClassName>
 Revit2013Samples_VB.CommandAnalysis
 </FullClassName>
 <ClientId>14a6cba3-a563-4dc7-a026-47fe5c9a11b1</ClientId>
 <VendorId>XXXX</VendorId>
 <VendorDescription>
 Packt Publishing Samples for
 'Autodesk Revit 2013 Customization with .NET'
 </VendorDescription>
 </AddIn>

How to do it...
1.	 Create a new class named CommandAnalysis and copy the boilerplate command

code into this new class being careful to maintain the name of this new class
as CommandAnalysis.

2.	 This command needs an additional namespace reference that was not included in
our boilerplate code sample. Add this to the very top of our class file:
Imports Autodesk.Revit.DB.Analysis

Instant Autodesk Revit 2013 Customization with .NET How-to

63

3.	 We will need one class-wide variable named _schemaId for our analytical framework
setup. Place the following line of code just beneath the line that reads Implements
IExternalCommand:
 Dim _schemaId As Integer = -1

4.	 We're going to need a few helper functions and subroutines to get our analytical
visualizations going. First place the following function at the very bottom of the class
just inside the End Class line. This function will return solid from the wall for us:
 ''' <summary>
 ''' Get the Solid From the Geometry
 ''' </summary>
 Public Function GetGeometry(ByVal g As GeometryElement) _
 As Solid

 ' Get the Wall Geometry
 Dim m_geo1 = g.GetEnumerator
 Do While m_geo1.MoveNext
 Dim geomObj As GeometryObject = m_geo1.Current

 ' Return the Solid if it has a Volume
 If TypeOf geomObj Is Solid Then
 Dim solid As Solid = DirectCast(geomObj, Solid)
 If solid.Volume > 0 Then
 Return solid
 End If
 End If

 Loop

 ' Failure
 Return Nothing

 End Function

5.	 The next helper routine we need will create an analysis style in the model for us.
Place this function just after the GetGeometry function we just added:
 ''' <summary>
 ''' Create an Analysis Display Style
 ''' </summary>
 Private Sub CreateAnalysisStyle(ByVal d As Document,
 ByVal v As View)

 ' Start a New Transaction
 Using t As New Transaction(d)
 If t.Start("Create AVF Style") Then

Instant Autodesk Revit 2013 Customization with .NET How-to

64

 ' Surface Settings
 Dim m_faces As New _
 AnalysisDisplayColoredSurfaceSettings()
 m_faces.ShowGridLines = False

 ' Colors
 Dim m_colors As New _
 AnalysisDisplayColorSettings()

 ' Display Legend
 Dim m_legend As New _
 AnalysisDisplayLegendSettings()
 m_legend.ShowLegend = True
 m_legend.NumberOfSteps = 10

 ' Create the Style
 Dim m_style As AnalysisDisplayStyle
 m_style = _
 AnalysisDisplayStyle.CreateAnalysisDisplayStyle(_
 d, "WallLength", m_faces,
 m_colors, m_legend)

 ' Set the Style to the View
 v.AnalysisDisplayStyleId = m_style.Id

 ' Commit Transaction
 t.Commit()

 End If

 End Using

 End Sub

6.	 This is the last of the three helper functions that we need and it performs
the actual coloring of the elements in the model. Place this routine after the
CreateAnalysisStyle function:
 ''' <summary>
 ''' Colorize the Wall
 ''' </summary>
 Private Sub PaintSolid(ByVal doc As Document,
 ByVal s As Solid,
 ByVal value As Double)

 ' Active View
 Dim v As View = doc.ActiveView

Instant Autodesk Revit 2013 Customization with .NET How-to

65

 ' Create the Style if Necessary
 If v.AnalysisDisplayStyleId =
 ElementId.InvalidElementId Then
 CreateAnalysisStyle(doc, v)
 End If

 ' Get the Spatial Field Manager
 Dim sfm As SpatialFieldManager = _
 SpatialFieldManager.GetSpatialFieldManager(v)

 ' Create one if missing
 If sfm Is Nothing Then
 sfm = _
 SpatialFieldManager.CreateSpatialFieldManager(v, 1)
 End If

 ' Get any Registered Results
 If _schemaId = -1 Then
 Dim results As IList(Of Integer) = _
 sfm.GetRegisteredResults()
 If Not results.Contains(_schemaId) Then
 _schemaId = -1
 End If

 End If

 If _schemaId = -1 Then

 Dim resultSchema1 As New _
 AnalysisResultSchema("WallLength",
 "Color Wall by Length")

 _schemaId = sfm.RegisterResult(resultSchema1)
 End If

 ' Get the Faces and Transform
 Dim faces As FaceArray = s.Faces
 Dim trf As Transform = Transform.Identity

 ' Process and Colorize each Face
 For Each f As Face In faces
 Dim idx As Integer = _
 sfm.AddSpatialFieldPrimitive(f, trf)

 Dim uvPts As IList(Of UV) = New List(Of UV)()
 Dim doubleList As New List(Of Double)()
 Dim valList As IList(Of ValueAtPoint) = _
 New List(Of ValueAtPoint)()

Instant Autodesk Revit 2013 Customization with .NET How-to

66

 Dim bb As BoundingBoxUV = f.GetBoundingBox()
 uvPts.Add(bb.Min)
 doubleList.Add(value)
 valList.Add(New ValueAtPoint(doubleList))

 ' Points and Values
 Dim pnts As New FieldDomainPointsByUV(uvPts)
 Dim vals As New FieldValues(valList)

 ' Update the Primitives
 sfm.UpdateSpatialFieldPrimitive(idx,
 pnts,
 vals,
 _schemaId)

 Next

 End Sub

7.	 Now that we have our helper functions all in place, we can begin to build up our
Execute function code that brings this all together. The rest of the steps will all
include code that needs to be added to the main Execute function. First we need
to get the Application, Document, and ActiveUIDocument references. Place
the following lines of code just after the line that reads ' Begin Code Here:
 Dim m_app As UIApplication
 m_app = commandData.Application
 Dim m_uidoc As UIDocument
 m_uidoc = m_app.ActiveUIDocument
 Dim m_doc As Document
 m_doc = m_uidoc.Document

8.	 The next step is to get all of the wall instances in the model:
 ' Get Wall Instances
 Dim m_col As New FilteredElementCollector(m_doc)
 m_col.WhereElementIsNotElementType()
 m_col.OfClass(GetType(Wall))
 Dim m_walls As New List(Of Wall)
 For Each x In m_col.ToElements
 m_walls.Add(TryCast(x, Wall))
 Next

9.	 Next we get the first 3D ViewFamilyType and use it to create a new 3D view:
 ' Get the First 3D View Type
 Dim m_3dvt As ViewFamilyType = Nothing
 Dim m_colV As New FilteredElementCollector(m_doc)
 m_colV.OfClass(GetType(ViewFamilyType))

Instant Autodesk Revit 2013 Customization with .NET How-to

67

 For Each x In m_colV.ToElements
 Dim m_vt As ViewFamilyType = _
 TryCast(x, ViewFamilyType)
 If Not m_vt Is Nothing Then
 If m_vt.ViewFamily = _
 ViewFamily.ThreeDimensional Then
 m_3dvt = m_vt
 Exit For
 End If
 End If
 Next

 ' Start a New Transaction
 Dim m_v As View3D = Nothing
 Using t As New Transaction(m_doc, "New 3D View")
 If t.Start Then

 ' Create a New 3D View
 m_v = View3D.CreateIsometric(m_doc, m_3dvt.Id)
 m_v.Name = "PACKT Analysis 3D View"

 ' Commit
 t.Commit()

 End If
 End Using

10.	 Next we set the new view active:
 ' Set this View Active
 m_uidoc.ActiveView = m_v

11.	 Next we hide all categories in the new 3D view:
 Using t As New Transaction(m_doc, "Hiding Objects")
 If t.Start Then

 ' Turn off all Categories in the New View
 For Each c As Category In m_doc.Settings.Categories
 Try
 c.Visible(m_v) = False
 Catch
 End Try
 Next

 ' Commit
 t.Commit()

 End If
 End Using

Instant Autodesk Revit 2013 Customization with .NET How-to

68

12.	 We are only concerned about the coarse view level of detail for our wall elements:
 ' Geometry Options
 Dim m_opt As New Options
 m_opt.IncludeNonVisibleObjects = True
 m_opt.DetailLevel = ViewDetailLevel.Coarse

13.	 The last bit of code is where we iterate over each of the wall elements and extract
the solid geometry to send it to our coloring routine:
 ' Process the Walls
 For Each w As Wall In m_walls

 ' Color by Length Value
 Dim m_length As Double = _
 w.Parameter("Length").AsDouble

 ' Ignore Tiny Walls
 If m_length > 1 Then

 ' Get the Wall's Solid
 Dim geo As GeometryElement = w.Geometry(m_opt)
 Dim m_solid As Solid = GetGeometry(geo)
 If Not m_solid Is Nothing Then

 ' Paint the Results
 PaintSolid(m_doc, m_solid, m_length)

 End If

 End If

 Next

14.	 Open the rac_basic_sample_project.rvt from the sample code bundle and
run the command. You should end up with a view similar to the one shown in the
following figure:

Instant Autodesk Revit 2013 Customization with .NET How-to

69

How it works...
We first created a clean 3D view named PACKT Analysis 3D View and made it the active
view. We then turned off all model categories so only the analysis data would stand out.

The next thing we needed to do was get or create an analysis display style and apply it to our
new 3D view, which is exactly what our CreateAnalysisStyle function does. This function
is where we configure how we want our legend to display the resulting information to us as
well as any coloring or surface grid settings that we want to use.

We then iterate through the list of walls in our model and use the Length parameter as a
value to drive our analysis coloring. Longer walls display blue while shorter length walls display
in a bright red. We dug into the wall elements with our GetGeometry function getting their
raw solids and then passing the resulting solids over to our PaintSolids function where
all the analysis colorization was managed.

Subscribing and unsubscribing to events
(Should know)

There are quite a few events supported by the Revit API. You can turn events on and off
from the ribbon if you like. Another topic that we will discuss in this recipe is how to override
standard Revit commands. This is handy when you might need to disable a feature entirely
for your users.

Anytime you want to enable an event in your application, you must first subscribe to the event
and tell Revit what you want it to do when that event occurs. In this recipe, we will learn how to
subscribe to the DocumentOpened event as well as how to unsubscribe to it when the Revit
session closes.

Getting ready
Don't forget to edit the .addin file with this new DBApplicationEvents application so we
can launch and debug it.

How to do it...
1.	 First create a new class named DBApplicationEvents and paste the code from

our DBApplicationBoilerPlate class into this one. We will use DBApplication
for this sample.

Instant Autodesk Revit 2013 Customization with .NET How-to

70

2.	 Add the following simple subroutine to this class that we will point our event handler
to execute when an event occurs in the Revit session:
 ''' <summary>
 ''' Document Opened Event Handler
 ''' </summary>
 Private Sub DocOpened(ByVal sender As Object,
 ByVal e As DocumentOpenedEventArgs)

 ' Basic Popup Message
 MsgBox("You Opened a New Doc!" & vbCr &
 e.Document.PathName,
 MsgBoxStyle.Information,
 "PACKT Event Message")

 End Sub

3.	 Subscribing to an event is done by using an AddHandler call inside our
OnStartup function. Place the following code just beneath the line that
reads ' Begin Code Here:
 AddHandler application.DocumentOpened,
 New EventHandler(Of DocumentOpenedEventArgs)(AddressOf
DocOpened)

4.	 Unsubscribing to an event is done by using a RemoveHandler call inside our
OnShutdown function. Place the following code just beneath the line that reads '
Begin Code Here:
 RemoveHandler application.DocumentOpened,
 New EventHandler(Of _
 DocumentOpenedEventArgs)(AddressOf DocOpened)

5.	 Now run the tool and open a document.

How it works...
The event is added and pointed to the function named DocOpened, which is a subroutine that
we added that could easily contain any code we want.

Thank you for buying
Instant Autodesk Revit 2013
Customization with .NET How-to

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective MySQL
Management" in April 2004 and subsequently continued to specialize in publishing highly focused
books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting and
customizing today's systems, applications, and frameworks. Our solution based books give you the
knowledge and power to customize the software and technologies you're using to get the job done.
Packt books are more specific and less general than the IT books you have seen in the past. Our
unique business model allows us to bring you more focused information, giving you more of what
you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website: www.packtpub.com.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should be
sent to author@packtpub.com. If your book idea is still at an early stage and you would like to
discuss it first before writing a formal book proposal, contact us; one of our commissioning editors
will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

FreeCAD [How-to]
ISBN: 978-1-84951-886-4 Paperback: 70 pages

Solid Modeling with the power of Python

1.	 Learn something new in an Instant! A short, fast,
focused guide delivering immediate results.

2.	 Packed with simple and interesting examples of
python coding for the CAD world.

3.	 Understand FreeCAD's approach to modeling and
see how Python puts unprecedented power in the
hands of users.

4.	 Dive into FreeCAD and its underlying scripting
language.

Processing 2: Creative
Programming Cookbook
ISBN: 978-1-84951-794-2 Paperback: 306 pages

Over 90 highly-effective recipes to unleash
your creativity with interactive art, graphics,
computer vision, 3D, and more

1.	 Explore the Processing language with a broad
range of practical recipes for computational art
and graphics

2.	 Wide coverage of topics including interactive art,
computer vision, visualization, drawing in 3D, and
much more with Processing

3.	 Create interactive art installations and learn to
export your artwork for print, screen, Internet, and
mobile devices

Please check www.PacktPub.com for information on our titles

SketchUp 7.1 for
Architectural Visualization:
Beginner's Guide
ISBN: 978-1-84719-946-1 Paperback: 408 pages

Creat stunning photo-realistic and artistic visuals of your
SketchUp models

1.	 Create picture-perfect photo-realistic 3D
architectural renders for your SketchUp models

2.	 Post-process SketchUp output to create digital
watercolor and pencil art

3.	 Follow a professional visualization studio workflow

4.	 Make the most out of SketchUp with the best free
plugins and add-on software to enhance your
models

Mudbox 2013 Cookbook
ISBN: 978-1-84969-156-7 Paperback: 260 pages

Design and build youe own enterprise applivations
for the iPad

1.	 Create amazing, high detail sculpts for games,
movies, and more

2.	 Extract high resolution texture maps to use on
your low poly 3d models

3.	 Create terrain that you can walk on in a
virtual world

4.	 Learn professional tricks that will improve your
workflow

Please check www.PacktPub.com for information on our titles

	Cover

	Copyright
	Credits
	About the Author
	About the Reviewer
	www.PacktPub.com
	Table of Contents
	Preface
	Instant Autosesk Revit 2013 Customization with .NET How-to
	Getting started with the Autodesk Revit 2013 API (Must know)
	Creating a simple command (Must know)
	Adding a custom push button (Must know)
	Element filtering (Must know)
	Accessing the ProjectInfo data (Must know)
	Extracting data (Should know)
	Changing values (Must know)
	Adding and removing parameters (Become an expert)
	Creating plan views (Must know)
	Creating a schedule (Become an expert)
	Creating sheets and placeholders (Must know)
	Placing views on sheets (Become an expert)
	Wall color by length (Become an expert)
	Subscribing and unsubscribing to events (Should know)

